ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Stem-cell-laden skin grafts could heal burn victims 30% faster, if not quicker

"Our goal is no death, no scar, and no pain," adds Marc Jeschke, paper co-author. "With this approach we come closer to no death and no scar."

Alexandru MicubyAlexandru Micu
November 8, 2018
in Biology, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

It’s the phoenix of skin grafts!

Skin old, new.
Image via Pixabay.

Researchers at the University of Toronto (UoT) are working to give burn victims their skin back. The team has developed a new process by which stem cells are retrieved from the burned skin and used to speed up recovery. Such a treatment option would greatly improve the chances of survival for those involved in fires or industrial accidents, as well as their quality of life to boot.

The team plans to start human trials by early 2019.

Skin to ashes, ashes to skin

“Because we’re using actual skin stem cells, and not from some other part of the body, we believe the quality of the skin will be better,” says Saeid Amini-Nik, a professor in the UoT Faculty of Medicine

“You want skin that stretches normally. In burn patients skin gets scarred and they have trouble moving joints because skin is not elastic.

Current procedures call for the removal and discarding of burned skin as medicinal waste. Collagen dressings are then applied to the site to protect the injury while it’s healing. This can take up to several months, however, during which patients are at high risk of developing (often fatal) infections.

Given the limitations of the current approach, researchers have long been interested in using stem cells to heal burns. Such cells were harvested from samples of organs from themselves or other patients/donors (such as umbilical cords, for example), which comes with its own host of problems:

  • Tissue incompatibility, leading to high rejection rates for the grafts.
  • Difficulties harvesting stem cells from the patients themselves. The cells used in such treatments are most often derived from undamaged portions of a patient’s skin or bone marrow. However, burn victims who need treatment with their own stem cells are usually those who have suffered extensive injuries — usually covering more than half of their bodies. Their extensive burns already pose a significant, potentially fatal risk, and they’re already at a high risk of infection. Surgically removing the skin or marrow needed for the treatment thus poses a real risk to their survival.

The team’s new approach started with them looking for live stem cells in samples of discarded dermis taken from burn victims. It was virtually unheard-of up to now, as it was considered a fool’s errand. The UoT researchers themselves hoped to find even one living cell in such samples — they were astonished to find thousands (even a million in one case) of living, usable cells in the burned tissue.

A preclinical trial involving animal models showed that adding human dermis stem cells to the collagen dressings improved healing speeds by 30%. There were no cases of rejection, and the stem cells naturally created skin to cover the wounds. The team hopes to see higher regrowth rates in the upcoming human trials, as they will be using human cells on people.

RelatedPosts

We’re getting a better idea of how moles turn into melanoma, and environment is key
Million-year-old dormant microbes beneath ocean floor push life to its absolute limits
Finnish appliance grows crops from cells in under a week
Photograph of nanobots killing off cancer
Cardiac stem cells.
Cardiac stem cells.
Image credits Gepstein Laboratory.

Amini-nik says the team expects the healing process to happen “very fast, possibly days instead of weeks or months,” which would be grand. Speed is key in healing burns, as each day spent with open wounds that need fresh dressings increases the chance of developing an infection — the baseline risk is already very high, and “sometimes [patients] die of sepsis.

Another major plus is that “using a patient’s own stem cells also won’t raise ethical issues,” the team explains.

“Much faster healing would be a major step forward,” says Amini-Nik. “We also believe this will be better for quality of life: Itching and inability to sweat are big problems for burn patients. We believe if we use the stem cells from the very same organ, we’ll grow better skin. ”

“Our goal is no death, no scar, and no pain,” adds Marc Jeschke, paper co-author. “With this approach we come closer to no death and no scar.”

The paper “Stem cells derived from burned skin – The future of burn care” has been published in the journal EBioMedicine.

Tags: Burn victimscellsGraftskinstem

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Genetics

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

byTibi Puiu
3 weeks ago
History

A Forgotten 200-Year-Old Book Bound in a Murderer’s Skin Was Just Found in a Museum Office

byTibi Puiu
2 months ago
Biology

Your Skin Can “Taste” Bitter Compounds to Protect Against Toxins

byTibi Puiu
3 months ago
Health

Scientists Discover RNA, Not DNA, Is Behind the Pain and Redness of Sunburn

byTibi Puiu
5 months ago

Recent news

Rare, black iceberg spotted off the coast of Labrador could be 100,000 years old

June 6, 2025

Captain Cook’s Famous Shipwreck Finally Found After 25-Year Search in Rhode Island

June 6, 2025

Thousands of Centuries-Old Trees, Some Extinct in the Wild, Are Preserved by Ancient Temples in China

June 6, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

OSZAR »