ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Scientists discover new quasicrystal formed by first-ever nuclear explosion at Trinity Site

The existence of these extremely rare crystals was thought to be impossible until a few decades ago.

Tibi PuiubyTibi Puiu
May 18, 2021
in Geology, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
The red trinitite sample containing the newly discovered quasicrystal. Credit: Luca Bindi and Paul J. Steinhardt.

On July 16, 1945, the United States Army performed the very first atomic bomb detonation at Trinity Site, New Mexico. The traumatic event obliterated the 30-meter-high test tower, as well as all the miles of copper wires that were connected to measuring and recording instruments. Strikingly, this vaporized debris fused with sand to form a new glassy material known as trinitite, which scientists have recently found at the site — a testament to the devastating, matter-altering power of nuclear weapons.

The red trinitite (Si61Cu30Ca7Fe2) has 5-fold rotational symmetry, which is not possible in a natural crystal. For this reason, it is classed as a “quasicrystal”, exotic materials that do not follow the rules of classical crystallization.

Most crystals are composed of a three-dimensional arrangement of atoms that repeat in an orderly pattern. Depending on their chemical composition, they have different symmetries. For example, atoms arranged in repeating cubes have fourfold symmetry. Atoms arranged as equilateral triangles have threefold symmetries.

Quasicrystals have an atomic structure of the constituent elements, but the pattern is not periodic (it never repeats itself).

They’re remarkable for two reasons: firstly, they’re incredibly rare in nature, and secondly, they’re incredibly unlikely. In fact, when the existence of quasicrystals was first predicted, it cost the career of Daniel Shechtman, the Israeli chemist who first discovered them and lost his job because everyone thought he was mad.

“The head of my lab came to me smiling sheepishly, and put a book on my desk and said: ‘Danny, why don’t you read this and see that it is impossible what you are saying,’” Shechtman, now employed at the Technion – Israel Institute of Technology in Haifa, once recounted.

Shechtman was vindicated decades later after he was awarded the 2011 Nobel Prize in Chemistry.

RelatedPosts

The U.S. Military is still using floppy disks to coordinate its nuclear arsenal
Nobel prize for chemistry awarded for the discovery of the structure of quasicrystals
State of matter difference between liquids and solids redefined
Victim’s jawbone shows shocking intensity of Hiroshima nuclear attack
An aerial view of ground zero 28 hours after the Trinity Test on July 16, 1945. Credit: Los Alamos National Laboratory.

Now, physicists at the Los Alamos National Laboratory have published a new study showing how the extreme shock, temperature, and pressure caused by a nuclear blast can birth new quasicrystals. Using scanning electron microscopy and X-ray diffraction, the researchers revealed the atomic structure of the 20-sided quasicrystal and its five-fold rotational symmetry that used to be considered impossible by conventional standards.

Back-scattered scanning electron microscope image of the sample containing the quasicrystal. Credit: Luca Bindi and Paul J. Steinhardt.

The scientists still don’t know exactly how the trinitite formed step by step, but it seems like the thermodynamic shock under which this quasicrystal formed is comparable to the conditions that led to the formation of natural quasicrystals found in the Khatyrka meteorite, dating back hundreds of millions of year ago.

“This quasicrystal is magnificent in its complexity—but nobody can yet tell us why it was formed in this way. But someday, a scientist or engineer is going to figure that out and the scales will be lifted from our eyes and we will have a thermodynamic explanation for its creation. Then, I hope, we can use that knowledge to better understand nuclear explosions and ultimately lead to a more complete picture of what a nuclear test represents,” said Terry C. Wallace, director emeritus of Los Alamos National Laboratory and co-author of the paper.

This trinitite is effectively the oldest artificial quasicrystal and could someday help scientists better understand illicit nuclear blasts and curb nuclear proliferation.

Tags: atomic bombnuclear weaponsquasicrystal

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

Researchers create a new type of “time crystal” inside a diamond

byMihai Andrei
2 months ago
Future

Inside ‘El Capitan’ the Most Powerful Supercomputer Ever Built. It Will Simulate Nuclear Weapons

byTibi Puiu
4 months ago
North Korean President Kim Jong Un inside the Kangson uranium enrichment facility.
News

North Korea wants you to look at its nuclear weapon facilities

byRupendra Brahambhatt
8 months ago
News

Scientists create infinitely complex mazes inspired by chess to tackle global challenges

byTibi Puiu
10 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

OSZAR »