ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Clay used by the First Nations people destroys fatal drug-resistant pathogens

A team at University of British Columbia claims that a type of clay found northwest of Vancouver is effective against a dangerous class of drug-resistant bacteria. The clay investigated by the Canadian researchers destroyed the ESKAPE germs, in some instances in less than 5 hours. Furthermore, the clay is completely natural and no toxic side-effects have been reported thus far.

Tibi PuiubyTibi Puiu
January 27, 2016
in Biology, Diseases, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

A team at University of British Columbia claims that a type of clay found northwest of Vancouver is effective against a dangerous class of drug-resistant bacteria. These germs are called ESKAPE bacteria because they don’t seem to respond to any anti-microbial medication, escaping any agent we throw at them and causing extensive morbidity and mortality in infected patients. Once patients get infected with ESKAPE bacteria, there is no available treatment and most die, ironically in a hospital where the drug-resistant germs congregate. The clay investigated by the Canadian researchers destroyed the ESKAPE germs, in some instances in less than 5 hours. Furthermore, the clay is completely natural and no toxic side-effects have been reported thus far.

 UBC researchers Julian Davies and Shekooh Behroozian with their 'magic' clay.
UBC researchers Julian Davies and Shekooh Behroozian with their ‘magic’ clay.

“More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms,” reads the paper.

“The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards.”

The  Kisameet clay (KC), a natural clay mineral from British Columbia, has been widely known for its therapeutic qualities for many years. Anecdotal evidence suggests that it was used by the local First Nations (Heiltsuk) people for several centuries for a variety of ailments, including ulcerative colitis, duodenal ulcer, arthritis, neuritis, phlebitis, skin irritation, and burns. Such is the case with other clay minerals, not just KC, however no such therapy has  been approved by regulatory agencies in Canada.

What KC looks like. It's been used for medicinal purposes for thousands of years.
What KC looks like. It’s been used for medicinal purposes for hundreds of years.

The researchers at University of British Columbia are among the first to perform an extensive study of the therapeutic effects of KC.They collected 16 ESKAPE pathogen strains from a number of sources in Vancouver, including Vancouver General Hospital (VGH), St. Paul’s Hospital (SPH), and the University of British Columbia (UBC) wastewater treatment pilot plant (WWTP). Each strain was grown in-vivo in Luria-Bertani (LB) broth or on LB agar.

When all else fails, this clay shines

Tests were performed using a panel of 36 antibiotics. These showed that the pathogens were resistant to the antibiotics, though with variability in their resistance. The presence of KC dramatically reduced the viability of all strains tested, though.

“For example, after a 5-h exposure to KC, no viable cells of A. baumannii AB-1270, Enterobacter sp. strain MI1, or Enterobacter sp. strain MI16 could be recovered, indicating potent activity against these strains. S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii AB-1264, and Enterobacter cloacae 1172 lost viability completely after 24 h, and the same killing took 48 h for E. faecium strains. In contrast, in water-only controls without KC, the decline in CFU during the same period of incubation was ≤1 log10 for all Gram-negative strains and ~1 to 3 log10 for E. faecium and S. aureus strains, respectively.”

The researchers were extremely surprised to find out the clay had killed at 16 strains! “They wanted microbial testing on clay, so I was a bit skeptical at first,” said UBC microbiologist Julian Davies. “Well, there are all sorts of claims out there, all kinds of folklore medicine and witchcraft.”

We’re beginning to run out of weapons against bacteria, which have caught on to our tricks. It may be only a matter of time until our anti-microbial arsenal is exhausted. Fatalities from ESKAPE pathogens will only increase in time, but there is progress. For one, there’s KC which definitely warrants more attention from the medical community (it works against fungal infections as well). Previously last week, I wrote about how nanoparticles activated by light selectively kill drug-resistant bacteria. The future isn’t as gloom as it seems, but such efforts require support, as Dr. Mark Blaskovich urged in a ZME Science guest post.

The clay is a complex mixture made up of about 24% by weight clay minerals, which are aluminum silicates, with various exchangeable metal ions and elemental sulfur. So, we don’t know for sure what makes KC so good at killing germs — even the toughest ones. “So far, we are sure that the mechanism of action is multifactorial,” says graduate student Shekooh Behroozian. “And we know the antimicrobial activity is pH-dependent, with the clay showing the best activity at acidic pH.”

RelatedPosts

The CDC warns that “chronic Lyme” is bogus and the treatments are horrifying and deadly
How one thumb injury led to one man getting drunk from eating carbs
Antibiotic resistance is at a crisis point – but new drugs could help defeat superbugs
American livestock is riddled with drugs – what’s in your meat

“It’s a dream that there could be isolates [in the clay] that make new antibiotics,” says Davies. But the clay must be tested for toxicity and its activity defined well enough to satisfy drug regulators, he added.

Tags: antibioticsclay

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Scientists Discover Natural Antibiotics Hidden in Our Cells

byTudor Tarita
2 months ago
Biology

This Velcro-like Antibiotic Could Be the Key to Defeating Superbugs

byRupendra Brahambhatt
1 year ago
A Matabele ant tends to the wound of a fellow ant whose legs were bitten off in a fight with termites. Image credits: Erik Frank / University of Wuerzburg.
Animals

Ants as Pharmacists: These ants treat infected wounds with antibiotics

byFermin Koop
1 year ago
Geology

Stunning new map of Mars’ geology shows that it harbored much more water than previously assumed

byAlexandru Micu
3 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

OSZAR »