ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Natural Sciences → Physics → Matter and Energy

Why is snow white?

...because it can't get a tan.

Alexandru MicubyAlexandru Micu
April 17, 2019 - Updated on May 7, 2023
in Matter and Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

Every time it snows, the world turns white, even for the briefest of moments. Today we’re taking a look at why that is.

Snow street.
Image via Pixabay.

You likely hear the song “White Christmas” played every time the winter holidays swing around. It goes to show just how deep cultural associations between snow and its color — that striking, pure, sparkling white — run. If you think about it, however, something doesn’t add up. Snow is basically made up of tiny crystals of water (ice) caked one on top of the other. Water isn’t white; nor is ice, for that matter.

Logic dictates that there must be another element coming into the mix to make snow, well, snow-white. There is. To whet your appetite, it’s basically the same process that makes polar bears appear white. So let’s see what it is.

Color me surprised

To get a clearer picture of why snow appears white, we need to take a look at what generates color in the first place.

Our eyes are basically sensors designed to pick up on a particular spectrum of electromagnetic radiation — which, surprise, surprise, we call the ‘visible light’ spectrum. We perceive different wavelengths or intervals of this spectrum as different colors: ‘wider’ waves look red to us, while ‘narrower’ waves appear to be blue.

Light is pretty much like any other type of radiation. When it hits an object, it can pass through, interact with it, or be reflected completely. Objects take on different colors because their individual building blocks (atoms or molecules) vibrate in response to different frequencies of energy (such as that carried by light). They absorb a particular band of energy to sustain this vibration — which transforms it to heat. The light frequencies which don’t get absorbed can keep going through this material (which makes it transparent or translucent) or get reflected (making the material opaque).

What you see as ‘color’ is the blend of all energy intervals or bands from the visible spectrum that a material doesn’t absorb. Think of white light as a sum of all the colors canceling each other out. To get a particular shade, then, you need to do one of two things. You can subtract its opposite, which we call its ‘complementary’ (here’s a handy color wheel), from the mix, leaving that particular color ‘uncanceled’. Alternatively, you can absorb all other wavelengths and reflect only the color you want.

RelatedPosts

Smart ‘curtains’ open and close just by responding to light only
New, cheap artificial photosynthesis scrubs the air and produces fuel
What light pollution is and what we can do about it
Scientists completely halt light for a record-breaking minute

As an example, leaves appear to be a fresh green because chlorophyll absorbs the wavelengths corresponding to red and blue. Their complementary colors are green and orange/yellow. Leaves absorb only a fraction of the green wavelengths, and what’s reflected creates their color. It’s particularly interesting to note that sunlight is heavy in the green-wavelengths of light. Plants want red and blue light because they’re the less energetic parts of solar radiation. Going for the green spectrum would actually radiation-fry the leaves’ biochemical gears.

Don’t judge a snow by its color

If you put a chunk of ice next to a handful of snow, it’s pretty easy to tell that their colors do not match. One looks basically like solid water while the other is all glimmery, white, and definitely not transparent. So what gives?

Well, first off, caution to the wise: ice isn’t transparent — it’s translucent. Some of the atoms in the ice molecule are close enough to alter lightwaves as they come into contact. Think of it like the light having to squeeze between these atoms as it passes through ice. It doesn’t bother the light very much, but it does ‘bend’ its trajectory a little. Put your finger in a glass of water, and the submerged part will look skewed compared to the rest of your hand; it’s the same process at work.

Shape and size also make an appearance here. Snow is made up of many tiny ice crystals stacked together. When light encounters snow, it goes through the first layer of crystals and gets bent a little. From here, it passes to a new crystal, and the process repeats. Kind of like a disco ball, the snow keeps refracting light until it’s bent right out the pile. Since ice is translucent (doesn’t absorb any wavelength of light), the color of this light isn’t altered, so it’s still white when it exits the pile of snow to hit your retina.

Powder snow.
Matte but glittery.
Image via Pixabay.

The small size of ice crystals in snow also gives it that ‘matte but glittery’ look. Smooth objects reflect light specularly, or like a mirror. Rough surfaces scatter the light they reflect instead, which is why we can perceive texture from looking at an object. The crystals in snow are smooth, so each reflects light specularly. From the right angles, you can see this as tiny, bright reflections on the ice. When clumped up together, however, the crystals scatter light overall. Because the way light falls on it helps create the color, snow can take shades of blue, purple, or even pink in certain circumstances — when it’s in shadow, for example.

As for the polar bears, they’re not really white. Their fur is actually pretty dark in color. Polar bears’ coats are made of two layers of hairs, one short and thick, the other a bit longer and more sparse. This second, longer coat is made up of transparent hairs with hollow interiors. Much like in the case of snow, light falling on these hairs scatters (thanks to light-scattering particles inside the hollow cores) and is reflected back out, giving the bears a white appearance. Salt particles in between the hairs left over from ocean water evaporating after a swim further enhance this effect.

Tags: Colorlightsnowwhite

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
4 weeks ago
Future

Why Perovskite LEDs Might Soon Replace Every Light in Your Home

byTibi Puiu
2 months ago
Physics

Rube Goldberg: The beautiful and timeless appeal of complex, useless contraptions

byTibi Puiu
9 months ago
A plankton bloom in the Barents Sea. Image credits: NASA’s Earth Observatory.
Climate

Climate change is changing the ocean’s color

byFermin Koop
2 years ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025 - Updated on May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

OSZAR »