ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment

There’s a silent hazard lurking below cities, and our buildings aren’t ready to handle it

Yay, another way climate change is affecting us.

Fermin KoopbyFermin Koop
July 11, 2023
in Climate, Environment, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

For the first time, researchers have linked underground climate change to the unstable ground below urban areas.

As the ground warms, it also deforms. This causes building foundations and the nearby ground to move due to expansion and contraction and even forms cracks, which end up causing long-term damage to the structures’ durability.

city infrastructure
Geological layers beneath the Chicago Loop. Image credit: Alessandro Rotta.

It’s the first study to quantify the ground deformations caused by subsurface heat islands and their effects on infrastructure. “It’s a silent hazard because it leads to ground deformations and displacement,” Alessandro Rotta Loria, who led the study, told ZME Science. “It also represents an opportunity to decarbonize urban areas.”

This might have been a significant cause of damage to buildings in the past and it will continue to be a problem in the years to come. However, the researchers also see it as an opportunity. Urban planners could capture the waste heat emitted underground by subterranean transportation systems in order to mitigate the effects of climate change.

Underground climate change

In most cities, the heat emanating from buildings and underground transportation steadily permeates, leading to an increase in ground temperature. Previous studies have found that the shallow subsurface beneath cities warms between 0.1 and 2.5 degrees Celsius per decade. This is mostly known as underground climate change.

This has been known to cause environmental problems, such as polluted groundwater, and health issues, such as asthma. However, its effects on civil infrastructure have remained understudied. “We wanted to unveil if ground deformations could represent an issue for the operational performance of infrastructure,” Rotta Loria told ZME Science.

Over the years, Rotta Loria and his team set up a wireless network of over 150 temperature sensors across the Chicago Loop, the central business center of the city, both above and below ground. This involved installing sensors in the basement of buildings, underground parking garages, subway tunnels and subsurface streets.

RelatedPosts

Low-meat diets can reduce the environmental impact of food production
There’s no going back if we start geoengineering the planet, not if we care about wildlife
Record level atmospheric CO2. Reaches 400 ppm for the first time in 3 million years
Let more big fish sink — it can help tackle climate change

The data showed that underground temperatures below the Loop are usually 10 degrees Celsius warmer than beneath Grant Park, a greenspace area. Once he had this information, Rotta Loria built a 3D computer model to simulate how ground temperatures changed since 1951 – the year when Chicago finalized its subway tunnels.

The researchers found values in line with those measured in the field and used the simulation to predict how temperatures will change until 2051. They also modeled how ground changes in response to higher temperatures. Some materials such as soft clay contract when they experience heat and others such as hard clay and limestone expand.

According to the simulations, a warmer climate can cause the ground to swell and expand upward by up to 12 millimeters and to contract downward by up to eight millimeters. While it seems it’s not a lot and something we wouldn’t even feel, the variation takes a big toll on buildings, in some cases affecting their operational requirements.

“We have shown that ground deformations can be so severe that they lead to problems for the performance of civil infrastructure,” Rotta Loria said in a media statement. “It’s not like a building will suddenly collapse. Things are sinking very slowly. The consequences for serviceability of structures and infrastructures can be very bad.”

Up next, Rotta Loria wants to expand his research by investigating which types of infrastructure are especially sensitive to ground deformation and under which conditions, while also developing an even more efficient model. This will be a “powerful tool” that can be used for scientific purposes and also for engineering and decision-making, he told ZME Science.

The study was published in the journal Communications Engineering.

Tags: climate change

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
3 days ago
Science

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

byTudor Tarita
1 month ago
Environment

Trump-Appointed EPA Plans to Let Most Polluters Stop Reporting CO2 Emissions

byTibi Puiu
1 month ago
Climate

Japan’s Cherry Blossoms Are Blooming Earlier Than Ever. Guess Why

byMihai Andrei
2 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

OSZAR »